Probability and Statistics

Alvin Lin

Probability and Statistics: January 2017 - May 2017

Statistics and their Distributions

The random variables X_1, X_2, \ldots, X_n are said to form a random sample of size n if the following conditions are satisfied.

- 1. Every X_i has the same probability distribution.
- 2. The random variable X_1, X_2, \ldots, X_n are independent.

Example

Using the population of graduating RIT students, select a person from the population and observe his or her GPA. Then, with/without replacement (the population size is big and n is not big compared to the population size) select a student and then observe his or her GPA. Repeat n times. We consider n random variables where X_1 is the GPA of the first selected person, X_2 is the GPA of the second selected person, and so on. Then X_1, X_2, \ldots, X_n for a random sample of size n. Once we finish the n^{th} observation, we have n numbers:

$$x_1, x_2, \ldots, x_n$$

We can consider the sample mean, median, variance, fourth spread, etc as functions. Consider the case n = 3.

$$(2.9, 3.0, 3.8) \rightarrow 3.233...$$

 $(2.5, 3.7, 3.9) \rightarrow 3.466...$

 \overline{X} is a statistic and random variable that takes a sample as input and outputs a number. Sample mean, sample median, sample variance, et cetera can be viewed as random variables. Each of them is called a statistic. The probability distribution of X_1, X_2, \ldots, X_n is also called population distribution.

Example

A certain brand of MP3 player comes in three configurations: a model with 2GB of memory, costing \$80, a 4GB model priced at \$100, and an 8GB version with a price tag of \$120. If 20% of all purchasers choose the 2GB model, 30% choose the 4GB model, then the probability distribution of the cost X of a single randomly selected MP3 player purchase is given by:

x	80	100	120
p(x)	0.2	0.3	0.5
p(80) =	-n(X)	-80)	-0.2
- ()	- 、	- 00)	-0.2
$\mu =$	= 106		
$\sigma^2 =$	= 244		

Suppose on a particular day, only two MP3 players are sold. Let X_1 be the random variable representing the revenue of the first sale, and X_2 be the random variable representing the revenue of the second sale. X_1 and X_2 are independent and their pmf is p(x). X_1 and X_2 form a random sample of size 2.

x_1	x_2	$p(x_1, x_2)$	\overline{x}	s^2
80	80	0.04	80	0
80	100	0.06	90	200
80	120	0.2×0.5	100	800
100	80	0.06	90	200

The Distribution of the Sample Mean

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and standard deviation σ . Then:

- 1. $E(\overline{X}) = \mu_{\overline{x}} = \mu$
- 2. $V(\overline{X}) = \sigma_{\overline{x}}^2 = \frac{\sigma^2}{n}$

Let $T_{\circ} = X_1 + X_2 + X_3 + \dots + X_n$. (the sample total)

- 1. $E(T_{\circ}) = \mu_{T_{\circ}} = n\mu$
- 2. $V(T_{\circ}) = \sigma_{T_{\circ}}^2 = n\sigma^2$

Each of X_1, X_2, \ldots, X_n has pmf p(x) or pdf f(x). $X_1, X_2, X_3, \ldots, X_n$ are independent.

$$\overline{X} = \frac{X_1 + X_2 + \dots + X_n}{n}$$

In the above proposition, p(x) or f(x) can be any function satisfying the following conditions.

- $p(x) \ge 0$ for any x.
- $f(x) \ge 0$ for any x.
- $\sum p(x) = 1$
- $\int_{-\infty}^{\infty} f(x) \, \mathrm{d}x = 1$

p(x) or f(x) is the pmf or pdf of X_i and represents the population distribution. Let X_1, X_2, \ldots, X_n be a random sample from a normal distribution with mean μ and variance σ^2 . Then for any n, \overline{X} is normally distributed with mean $\mu_{\overline{x}} = \mu$ and variance $\sigma_{\overline{x}}^2 = \frac{\sigma^2}{n}$ (same as before). T_{\circ} is normally distributed with $\mu_{T_{\circ}} = n\mu$ and $\sigma_{T_{\circ}}^2 = n\sigma^2$.

Central Limit Theorem

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then if n is sufficiently large, \overline{X} has approximately normal distribution with $\mu_{\overline{x}} = \mu$ and $\sigma_{\overline{x}}^2 = \frac{\sigma^2}{n}$. T_{\circ} : normal with $\mu_{T_{\circ}} = n\mu$ and $\sigma_{T_{\circ}}^2 = n\sigma^2$.

You can find all my notes at http://omgimanerd.tech/notes. If you have any questions, comments, or concerns, please contact me at alvin@omgimanerd.tech