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Section 3.5

Exercise 1

Let S be the collection of vectors

[
x
y

]
in R2 that satisfy the given property. In each case, either prove that

S forms a subspace of R2 or give a counterexample to show that it does not.

x = 0

S =

[
x
y

]
=

[
0
y

]
= y

[
0
1

]
= span

([
0
1

])
Since

[
0
1

]
∈ R2, S is a subspace of R2.

Exercise 3

Let S be the collection of vectors

[
x
y

]
in R2 that satisfy the given property. In each case, either prove that

S forms a subspace of R2 or give a counterexample to show that it does not.

y = 2x

S =

[
x
y

]
=

[
x
2x

]
= x

[
1
2

]
= span

([
1
2

])
Since

[
1
2

]
∈ R2, S is a subspace of R2.

Exercise 5

Let S be the collection of vectors

xy
z

 in R3 that satisfy the given property. In each case, either prove

that S forms a subspace of R2 or give a counterexample to show that it does not.

x = y = z

S =

xy
z

 =

xx
x

 = x

1
1
1

 = span

1
1
1


Since

1
1
1

 ∈ R3, S is a subspace of R3.
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Exercise 7

Let S be the collection of vectors

xy
z

 in R3 that satisfy the given property. In each case, either prove

that S forms a subspace of R2 or give a counterexample to show that it does not.

x− y + z = 1

0− 0 + 0 6= 1

Since the zero vector is not in S, S is not a subspace of R3.

Exercise 9

Prove that every line through the origin in R3 is a subspace of R3.xy
z

 = t

a1a2
a3

 = span

a1a2
a3


Every line through the origin can be described as the span of a vector

a1a2
a3

 ∈ R3. Therefore, every line

through the origin is a subspace of R3.

Exercise 10

Suppose S consists of all points in R2 that are on the x-axis or the y-axis (or both). Is S a subspace of
R2? Why or why not?

S =

{[
x
0

]
| x ∈ R

}
∪
{[

0
y

]
| y ∈ R

}
[
1
0

]
∈ S[

0
1

]
∈ S[

1
0

]
+

[
0
1

]
=

[
1
1

]
/∈ S

The subspace S is not closed under addition.

Exercise 15

If A is the matrix in Exercise 11, is ~v =

−1
3
−1

 in null(A)?

A =

[
1 0 −1
1 1 1

]
A~v =

[
1 0 −1
1 1 1

] [
−1 3 −1

]
=

[
0
1

]
∴ ~v /∈ null(A)
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Exercise 16

If A is the matrix in Exercise 12, is ~v =

 7
−1
2

 in null(A)?

A =

1 1 −3
0 2 1
1 −1 −4


A~v =

1 1 −3
0 2 1
1 −1 −4

 7
−1
2


=

0
0
0


∴ ~v ∈ null(A)

Exercise 17

Give bases for row(A), col(A), and null(A).

A =

[
1 0 −1
1 1 1

]
=

[
1 0 −1
0 1 2

]
basis for row(A) =

{[
1 0 −1

]
,
[
0 1 2

]}
basis for col(A) =

{[
1
1

]
,

[
0
1

]}

A

x1x2
x3

 = ~0

1x1 − 1x3 = 0

1x2 + 2x3 = 0

null(A) =

 x1
−2x1
x1


= x1

 1
−2
1


basis for null(A) =


 1
−2
1
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Exercise 19

Give bases for row(A), col(A), and null(A).

A =

1 1 0 1
0 1 −1 1
0 1 −1 −1


=

1 1 0 1
0 1 −1 1
0 0 0 −2


=

1 1 0 0
0 1 −1 0
0 0 0 1


=

1 0 1 0
0 1 −1 0
0 0 0 1


basis for row(A) =

{[
1 0 1 0

]
,
[
0 1 −1 0

]
,
[
0 0 0 1

]}
basis for col(A) =


1

0
0

 ,
1

1
1

 ,
 1

1
−1


A~x = 0

x1 + x3 = 0

x2 − x3 = 0

x4 = 0

null(A) =


x1
−x1
−x1

0



basis for null(A) =




1
−1
−1
0




Exercise 27

Find a basis for the span of the given vectors. 1
−1
0

 −1
0
1

  0
1
−1
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 1 −1 0
−1 0 1
0 1 −1

 =

1 −1 0
0 −1 1
0 1 −1


=

1 −1 0
0 1 −1
0 0 0


basis =


 1
−1
0

 ,
−1

0
1


Exercise 29

Find a basis for the span of the given vectors.[
2 −3 −1

] [
1 −1 0

] [
4 −4 1

]
2 −3 −1

1 −1 0
4 −4 1

 =

0 −1 −1
1 −1 0
0 0 1


=

1 0 0
0 1 0
0 0 1


basis = {e1, e2, e3}

Exercise 35

Give the rank and nullity of the matrix in Exercise 17.

A =

[
1 0 −1
1 1 1

]
=

[
1 0 −1
0 1 2

]
rank(A) = 2

nullity(A) = 3− rank(A) = 1

Exercise 37

Give the rank and nullity of the matrix in Exercise 19.

A =

1 1 0 1
0 1 −1 1
0 1 −1 −1


=

1 0 1 0
0 1 −1 0
0 0 0 1


rank(A) = 3

nullity(A) = 4− rank(A) = 1
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Exercise 39

If A is a 3× 5 matrix, explain why the columns of A must be linearly dependent.

rank(A) ≤ min(m,n)

A~x = ~0

5 = rank(A) + nullity(A)

rank(A) ≤ 3

The nullity of A must be at least 2, therefore A~x = ~0 has a non-trivial solution. Thus, the columns of A
are linearly dependent. Since there are 5 columns and only 3 can be linearly independent, they must be
linearly dependent.

Exercise 40

If A is a 4× 2 matrix, explain why the rows of A must be linearly dependent.
There are four rows in total, but only two rows can be linearly independent in a 4 × 2 matrix, therefore
the rows must be linearly dependent.

Exercise 41

If A is a 3× 5 matrix, what are the possible values of nullity(A)?

rank(A) ≤ 3

n = rank(A) + nullity(A)

5 = rank(A) + nullity(A)

5− nullity(A) ≤ 3

−nullity(A) ≤ −2

nullity(A) ≥ 2

2 ≤ nullity(A) ≤ 5

Exercise 42

If A is a 4× 2 matrix, what are the possible values of nullity(A)?

rank(A) ≤ 2

n = rank(A) + nullity(A)

2 = rank(A) + nullity(A)

2− nullity(A) ≤ 2

−nullity(A) ≤ 0

nullity(A) ≥ 0

0 ≤ nullity(A) ≤ 2
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Exercise 43

Find all possible values of rank(A) as a varies.

A =

 1 2 a
−2 4a 2
a −2 1


=

1 2 a
0 4a+ 4 2 + 2a
1 − 2

a
1
a


=

1 2 a
0 4a+ 4 2 + 2a
0 − 2

a
− 2 1

a
− a


=

1 2 a
0 4a+ 4 2 + 2a
0 −2− 2a 1− a2


=

1 2 a
0 2a+ 2 1 + a
0 2a+ 2 a2 − 1


=

1 2 a
0 2a+ 2 1 + a
0 0 a2 − a− 2


2a+ 2 = 0

a = −1

→

1 2 −1
0 0 0
0 0 2


a2 − a− 2 = 0

(a− 2)(a+ 1) = 0

a = 1,−2

→

1 2 1
0 4 2
0 0 0


→

1 2 a
0 −2 −1
0 0 0


rank(A) =


1 if a = 1

2 if a = −1 ∨ a = 2

3 otherwise
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Exercise 44

Find all possible values of rank(A) as a varies.

A =

 a 2 −1
3 3 −2
−2 −1 a


=

 1 2
a

− 1
a

1 2 −2 + a
−2 −1 a


=

1 2
a

− 1
a

1 2 −2 + a
0 3 a+ 2(−2 + a)


=

1 2
a

− 1
a

0 2− 2
a
−2 + a+ 1

a

0 3 3a− 4


=

a 2 −1
0 2a− 2 −2a+ a2 + 1
0 3 3a− 4


a = 1

→

1 2 −1
0 0 0
0 3 −1


rank(A) =

{
2 if a = 1

3 otherwise

Exercise 45

Do

1
1
0

 ,
1

0
1

 ,
0

1
1

 form a basis for R3?

1 1 0
1 0 1
0 1 1

 =

1 0 −1
1 0 1
0 1 1


=

1 0 −1
0 0 2
0 1 1


=

1 0 0
0 0 1
0 1 0


=

1 0 0
0 1 0
0 0 1


Since the vectors are linearly independent and form the standard basis vectors, they form a basis for R3.
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Exercise 47

Do


1
1
1
0

 ,


1
1
0
1

 ,


1
0
1
1

 ,


0
1
1
1

 for a basis for R4?


1 1 1 0
1 1 0 1
1 0 1 1
0 1 1 1

 =


1 1 1 0
0 0 −1 1
0 −1 0 1
0 1 1 1



=


1 1 1 0
0 0 −1 1
0 0 1 2
0 1 1 1



=


1 1 1 0
0 0 0 3
0 0 1 2
0 1 1 1



=


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0



=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Since the vectors form the standard basis vectors, they form a basis for R4.

Exercise 51

Show that w is in span(B) and find the coordinate vector [w]B.

B =


1

2
0

 ,
 1

0
−1

 ~w =

1
6
2



c1

1
2
0

+ c2

 1
0
−1

 =

1
6
2


1 1 1

2 0 6
0 −1 2

 =

1 1 1
0 −2 4
0 −1 2


=

1 0 3
0 1 −2
0 0 0


[w]B =

[
3
−2

]
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Exercise 52

Show that w is in span(B) and find the coordinate vector [w]B.

B =


3

1
4

 ,
5

1
6

 ~w =

1
3
4



c1

3
1
4

+ c2

5
1
6

 =

1
3
4


3 5 1

1 1 3
4 6 4

 =

0 2 −8
1 1 3
2 3 2


=

0 1 −4
1 1 3
0 1 −4


=

1 0 7
0 1 −4
0 0 0


[w]B =

[
7
−4

]
Exercise 57

If A is m× n, prove that every vector in null(A) is orthogonal to every vector in row(A).

A~x = ~0 ∀~x ∈ Rm

~y =
m∑
i=1

ciai ∀~u ∈ row(A)

=
[
col1(A) . . . colm(A)

]  c1...
cm


= AT

 c1...
cm


xTy = xTAT c

xTy = (Ax)T c

x · y = 0c = 0
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Exercise 58

If A and B are n× n of rank n, prove that AB has rank n.

nullity(A) = 0

nullity(B) = 0

B~x = 0

A(B~x) = 0

(AB)~x = 0

nullity(AB) = 0

rank(AB) = n− nullity(AB) = n

Exercise 59a

Prove that rank(AB) ≤ rank(B).

n = rank(AB) + nullity(AB)

= rank(B) + nullity(B)

nullity(B) = dim(null(B))

≤ dim(null(AB))

≤ nullity(AB)

rank(AB) + nullity(AB) = rank(B) + nullity(B)

∴ rank(AB) ≤ rank(B)

Exercise 60a

Prove that rank(AB) ≤ rank(A).

AB = A
[
col1(B) . . . coln(B)

]
col(AB) ⊆ col(B)

dim(col(AB)) ≤ dim(col(B))

rank(AB) ≤ rank(B)

Exercise 61

Prove that if U is invertible, then rank(UA) = rank(A).

A = IA

A = U−1UA

rank(U) = n

∴ rank(A) = n = rank(U)

Prove that if V is invertible, then rank(AV ) = rank(A).

A = AI

A = AV −1V

rank(U) = n

∴ rank(A) = n = rank(V )
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Exercise 62

Prove that an m × n matrix A has rank 1 if and only if A can be written as the outer product uvT of a
vector u ∈ Rm and v ∈ Rn.
Suppose:

A =

a1...
an

 =

c1...
cn

w
u =

c1...
cn


w = vT

A = uvT

rank(A) = rank(uvT )

≤ rank(u)

≤ 1

rank(A) = 1

Exercise 63

Prove that an m× n matrix A has rank r, prove that A can be written as the sum of r matrices, each of
which has rank 1.

rank(A) = r

= dim(row(A))

A =

a1...
am



=


c11v1 + c12v2 + · · ·+ c1rvr
c21v1 + c22v2 + · · ·+ c2rvr

...
cm1v1 + vm2v2 + · · ·+ cmrvr



=


c11
c21
...
cm1

 v1 + · · ·+


c1r
c2r
...
cmr

 vr

Because


c11
c21
...
cm1

, has rank 1, each of the r matrices has rank 1.

12



Exercise 64

Prove that, for m× n matrices A and B, rank(A+B) ≤ rank(A) + rank(B).

rowi(A+B) = rowi(A) + rowi(B)

The rows of A+B can be expressed as linear combinations of the respective rows of A and B.

Exercise 65

Let A be an n× n matrix such that A2 = 0. Prove that rank(A) ≤ n
2
.

A2 = A
[
col1(A) . . . coln(A)

]
= 0

A~x = 0

col(A) ⊆ null(A)

rank(A) + nullity(A) = n

rank(A) + rank(A) ≤ n

2rank(A) ≤ n

rank(A) ≤ n

2

Exercise 66

Let A be a skew-symmetric n× n matrix.

• Prove that xTAx = 0 for all x ∈ Rn.

xTAx = (xTAx)T )

= (Ax)T (xT )T

= xTATx

= xT (−A)x

xTAx = −xTAx
∴ xTAx = 0

• Prove that I + A is invertible.
If this is true (I + A)x = 0 has only the trivial solution.

(I + A)x = 0

x+ Ax = 0

xTx+ xTAx = 0(xT )

xTx+ 0 = 0

∴ x = 0
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Section 3.6

Exercise 1

Let TA : R2 → R2 be the matrix transformation corresponding to A =

[
2 −1
3 4

]
. Find TA(~u) and TA(~v),

where ~u =

[
1
2

]
and ~v =

[
3
−2

]
.

TA(~u) =

[
0
11

]
TA(~v) =

[
8
1

]
Exercise 3

Prove that the given transformation is a linear transformation, using the definition.

T

[
x
y

]
=

[
x+ y
x− y

]
T (u+ v) = T

([
ux + vx
uy + vy

])
=

[
ux + vx + uy + vy
ux + vx − uy − vy

]
=

[
(ux + uy) + (vx + vy)
(ux − uy) + (vx − vy)

]
= T (u) + T (v)

T (cu) =

[
cux + cuy
cux − cuy

]
= c

[
ux + uy
ux − uy

]
= cT (u)
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Exercise 5

Prove that the given transformation is a linear transformation, using the definition.

T

xy
z

 =

[
x− y + z

2x+ y − 3z

]

T (u+ v) = T

([
ux + vx
uy + vy

])
=

[
(ux + vx)− (uy + vy) + (uz + vz)

2(ux + vx) + (uy + vy)− 3(uz + vz)

]
=

[
(ux − uy + uz) + (vx − vy + vz)

(2ux + uy − 3uz) + (2vx + vy − 3vz)

]
= T (u) + T (v)

T (cu) =

[
cux − cuy + cuz
c2ux + cuy − c3uz

]
= c

[
ux − uy + uz

2ux + uy − 3uz

]
= cT (u)

Exercise 7

Give a counterexample to show that the given transformation is not a linear transformation.

T

[
x
y

]
=

[
y
x2

]

T

(
2

[
3
3

])
=

[
6
36

]
6= 2T

([
3
3

])
6=
[

6
18

]
Exercise 9

Give a counterexample to show that the given transformation is not a linear transformation.

T

[
x
y

]
=

[
xy
x+ y

]

T

(
2

[
3
3

])
=

[
36
12

]
6= 2T

([
3
3

])
6=
[
18
12

]
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Exercise 11

Find the standard matrix of the linear transformation.

T

[
x
y

]
=

[
x+ y
x− y

]
=

[
1 1
1 −1

]
Exercise 13

Find the standard matrix of the linear transformation.

T

xy
z

 =

[
x− y + z

2x+ y − 3z

]

=

[
1 −1 1
2 1 −3

]
Exercise 40

Use matrices to prove the given statements about the transformations from R2 to R2. If Rθ denotes a
rotation (about the origin) through the angle θ, then Rα ◦Rβ = Rα +Rβ.

Rα =

[
cosα − sinα
sinα cosα

]
Rβ =

[
cos β − sin β
sin β cos β

]
Rα ◦Rβ =

[
cosα − sinα
sinα cosα

] [
cos β − sin β
sin β cos β

]
=

[
cosα cos β − sinα sin β − cosα sin β − sinα cos β
sinα cos β + cosα sin β − sinα sin β + cosα cos β

]
=

[
cosα cos β − sinα sin β −(cosα sin β + sinα cos β)
sinα cos β + cosα sin β cosα cos β − sinα sin β

]
=

[
cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

]
= Rα+β

Exercise 42

(a) If P is a projection, then P ◦ P = P .

P =

 d2x
d2x+d

2
y

dxdy
d2x+d

2
y

dxdy
d2x+d

2
y

d2y
d2x+d

2
y


P ◦ P =

 d4x+d
2
xd

2
y

(d2x+d
2
y)

2

d3xdy+dxd
3
y

(d2x+d
2
y)

2

d3xdy+dxd
3
y

(d2x+d
2
y)

2

d4y+d
2
xd

2
y

(d21+d
2
2)

2


= P
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Exercise 44

Let T be a linear transformation from R2 to R2. Prove that T maps a straight line to a straight line or a
point.

l = ~x+ t~d

T (~x+ t~d) = T (~x) + T (t~d)

= T (~x) + tT (~d)

When t = 0, the result is a point, otherwise, the resulting mapping is a line.

Exercise 52

Prove that Pl(c~v) = cPl(~v) for an scalar c.

Pl(c~v) =

(
~d · (c~v)

~d · ~d
~d

)

=

(
c(~d · ~v)

~d · ~d
~d

)

= c

(
~d · ~v
~d · ~d

~d

)
= cPl(~v)

Exercise 53

Prove that T : Rn → Rm is a linear transformation if and only if:

T (c1 ~v1 + c2 ~v2) = c1T (~v1) + c2T (~v2)

T (c1 ~v1 + c2 ~v2) = T (c1 ~v1) + T (c2 ~v2)

= c1T (~v1) + c2T (~v2)

Exercise 54

Prove that (as noted at the beginning of this section) the range of a linear transformation T : Rn → Rm

is the column space of its matrix [T ].

[T ] =

a11 . . . a1n
...

...
...

am1 . . . amn


~u =

u1...
un


T (~u) = u1

a11...
am1

+ · · ·+ un

a1n...
amn


The range of T is a linear combination of the columns, so it is a subset of the column space. The converse
is also true, the column space is a subset of the range. Therefore, the two sets are equal.

If you have any questions, comments, or concerns, please contact me at alvin@omgimanerd.tech
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