
Differential Equations

Alvin Lin

January 2018 - May 2018

Separable Equations

Consider:
dy

dx
= p(y)g(x)

In this case, we can rewrite it as:

dy

p(y)
= g(x) dx

If we let h(y) = 1
p(y)

:

h(y) dy = g(x) dx∫
h(y) dy =

∫
g(x) dx

H(y) = G(x) + c

This yields an implicit solution. Separable equations can be linear or non-linear.

Example

Solve the following:
dy

dx
= 8x3e−2y
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dy

dx
= 8x3e−2y

dy

e−2y
= 8x3 dx

e2y dy = 8x3 dx∫
e2y dy =

∫
8x3 dx

1

2
e2y + c1 = 2x4 + c2

1

2
e2y = 2x4 + c

We can also solve this explicitly:

1

2
e2y = 2x4 + c

ln(e2y) = ln(4x4 + c)

2y = ln(4x4 + c)

y =
ln(4x4 + c)

2

Example

Solve the following initial value problem:

dy

dx
= (1 + y2) tan(x) y(0) =

√
3

This is a non-linear separable equation.

dy

dx
= (1 + y2) tan(x)

dy

1 + y2
= tan(x) dx∫

dy

1 + y2
=

∫
tan(x) dx

tan−1(y) = ln | sec(x)|+ c
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Using our initial value y(0) =
√

3:

tan−1(
√

3) = ln | sec(0)|+ c

tan−1(
√

3) = ln |1|+ c

tan−1(
√

3) = c

c =
π

3
over

(
−π
2
,
π

2

)
We can now solve explicitly for y:

tan−1(y) = ln | sec(x)|+ π

3

tan(tan−1(y)) = tan

(
ln |sec(x)|+ π

3

)
y = tan

(
ln |sec(x)|+ π

3

)

Example

Solve the following initial value problem over [0,∞):

√
y dx+ (1 + x) dy = 0 y(0) = 1

√
y dx+ (1 + x) dy = 0

(1 + x) dy = −√y dx

dy

dx
= (−√y)

1

1 + x
dy
√
y

= − dx

1 + x∫
y−

1
2 dy = −

∫
dx

1 + x

2y
1
2 = − ln |1 + x|+ c

Using our initial value y(0) = 1:

2 = − ln |1|+ c

c = 2
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We can now solve explicitly for y:

2
√
y = 2− ln |1 + x|
√
y =

2− ln |1 + x|
2

y =

[
2− ln |1 + x|

2

]2
Example

Solve the initial value problem:

x2
dy

dx
= y − xy y(1) = 1

x2
dy

dx
= y − xy

x2
dy

dx
= y(1− x)

dy

dx
= (y)

(
1− x
x2

)
dy

y
=

1− x
x2

dx∫
dy

y
=

∫ [
1

x2
− 1

x

]
dx

ln |y| = −1

x
− ln |x|+ c

eln |y| = e−
1
x
−ln |x|+c

|y| = e−
1
x e− ln |x|ec

= e−
1
x

1

|x|
ec

Let : k = ±ec

y =
ke−

1
x

x
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Using our initial value y(1) = 1:

1 =
ke−1

1
k = e

We can now solve explicitly for y:

y =
ke−

1
x

x

y =
e1−

1
x

x

Example

Solve the initial value problem:

1

θ

dy

dθ
=
y sin θ

y2 + 1
y(π) = 1

1

θ

dy

dθ
=
y sin θ

y2 + 1
dy

dθ
= (θ sin θ)(

y

y2 + 1
)

y2 + 1

y
dy = θ sin θ dθ∫

y2 + 1

y
dy =

∫
θ sin θ dθ

y2

2
+ ln |y|+ c = −θ cos θ −

∫
(− cos θ dθ)

= −θ cos θ + sin θ + c

Using our initial value y(π) = 1:

1

2
= −π cos(π) + sin(π) + c

1

2
= −π(−1) + c

c =
1

2
− π
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We can now solve explicitly for y:

y2

2
+ ln |y| = −θ cos θ + sin θ + (

1

2
− π)
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First Order Linear Equations

General form:

a1(x)
dy

dx
+ a0(x)y = g(x)

Let’s consider:

x
dy

dx
+ y = x2

By the product rule we can see that the left hand side is equal to dy
dx

[
xy

]
:

d

dx

[
xy

]
= x2

Integrating both sides: ∫
d

dx

[
xy

]
dx =

∫
x2 dx

xy =
x3

3
+ c

y =
x2

3
+
c

x

Standard Form

Consider:

a1(x)
dy

dx
+ a0(x)y = g(x)

Write it in standard form:
dy

dx
+
a0(x)

a1(x)
y =

g(x)

a1(x)

Let P (x) = a0(x)
a1(x)

and Q(x) = g(x)
a1(x)

:

dy

dx
+ P (x)y = Q(x)

This is a first order linear equation in standard form. In order to solve this, we need
to determine a standard function of x called µ. We multiply the equation by µ:

µ(x)
dy

dx
+ µ(x)P (x)y = µ(x)Q(x)
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We require that that µ′(x) = µ(x)P (x). To find this function µ:

µ′(x)

µ(x)
= P (x)∫

µ′(x)

µ(x)
= µP (x)

ln |µ(x)| =
∫
P (x) dx+ c

c = 0

eln |µ| = e
∫
P (x) dx

|µ(x)| = e
∫
P (x) dx

This is called an integrating factor. From this, we can determine that:

d

dx

[
µ(x)y

]
= µ(x)Q(x)∫

d

dx

[
µ(x)y

]
=

∫
µ(x)Q(x)

µ(x)y =

∫
µ(x)Q(x) dx

y =
1

µ(x)

[
µ(x)Q(x) dx

]
µ(x) = e

∫
P (x) dx

Example

dy

dx
− 3y = 6

This is a first order linear equation already in standard form. It is also separable,
but we will solve using the method for first order linear equations.

1. Identify P (x):
P (x) = −3 Q(x) = 6

2. Find µ(x):
µ(x) = e

∫
−3 dx = e−3x
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3. Multiply the given equation by µ(x):

e−3x
dy

dx
− 3e−3xy = 6e−3x

d

dx

[
e−3xy

]
= 6e−3x∫

d

dx

[
e−3xy

]
dx =

∫
6e−3x dx

e−3xy = 6(−1

3
e−3x) + c

= −2e−3x + c

y = −2 + Ce3x

Example

x
dy

dx
− 4y = x6ex

1. Write it in standard form:

dy

dx
− 4

x
y = x5ex

2. Identify P (x):

P (x) =
−4

x

3. Find µ(x):

µ(x) = e
∫ −4

x
dx = e−4 ln |x| = eln

1
x4 =

1

x4

4. Multiply the given equation by µ(x):

1

x4
dy

dx
− 4

x5
y = xex

d

dx

[
1

x4
y

]
= xex

1

x4
y =

∫
xex dx = xex −

∫
ex dx = xex − ex + c

y = x5ex − x4ex + Cx4
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Example

Solve the following over (0,∞):

x
dy

dx
+ 3(y + x2) =

cos(x)

x2

x
dy

dx
+ 3y =

cos(x)

x2
− 3x2

dy

dx
+

3

x
y =

cos(x)

x3
− 3x

P (x) =
3

x

µ(x) = e
∫

3
x

dx = e3 ln(x) = eln(x
3) = x3

x3
dy

dx
+ 3x2y = cos(x) + 3x4

d

dx

[
x3y

]
= cos(x) + 3x4∫

d

dx

[
x3y

]
dx =

∫
cos(x) + 3x4 dx

x3y = sin(x) +
3x5

5
+ c

y =
sin(x)

x3
− 3x2

5
+

c

x3

Example

Solve the following initial value problem over (−π
2
, π
2
) given y(0) = 2:

cos(x)
dy

dx
+ sin(x)y = 1

dy

dx
+

sin(x)

cos(x)
y =

1

cos(x)

dy

dx
+ tan(x)y = sec(x)

µ(x) = e
∫
P (x) dx = e

∫
tan(x) dx = eln | sec(x)| = sec(x)

sec(x)
dy

dx
+ sec(x) tan(x)y = sec2(x)
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d

dx

[
sec(x)y

]
= sec2(x)∫

d

dx

[
sec(x)y

]
dx =

∫
sec2(x) dx

sec(x)y = tan(x) + c

y =
tan(x)

sec(x)
+

c

sec(x)

= sin(x) + c cos(x)

Using our initial value:

y = sin(x) + c cos(x)

2 = sin(0) + c cos(0)

= 0 + c

c = 2

y = sin(x) + 2 cos(x)
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Substitutions and Transformations

Consider:
dy

dx
+ P (x)y = Q(x)yn

where n is any real number. This is called a Bernoulli Equation. We use the
substitution v = y1−n to transform the equation into a new variable:

dv

dx
= (1− n)y−n

dy

dx

This gives a linear equation in v:

dy

dx
=

1

1− n
yn

dv

dx

We divide the equation by yn:

y−n
dy

dx
+ P (x)y(y−n) = Q(x)

We can now substitute for dy
dx

:

1

1− n
yn

dv

dx
y−n + P (x)y1−n = Q(x)

1

1− n
dv

dx
+ P (x)v = Q(x)

dv

dx
+ (1− n)P (x)v = (1− n)Q(x)

Using this substitution allows us to change our equation into a first-order linear
equation in standard form, which we can now solve.
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Example

Solve the following over (0,∞):

dy

dx
+
y

x
= x2y2

dy

dx
+

1

x
y = x2y2

v = y1−2 = y−1

dv

dx
= −y−2 dy

dx
dy

dx
= −y2 dv

dx
1

y2

(
dy

dx
+

1

x
y = x2y2

)
y−2

dy

dx
+

1

x
y(y−2) = x2

y−2(−y2 dv

dx
) +

1

x
y−1 = x2

− dv

dx
+

1

x
v = x2

dv

dx
− 1

x
v = −x2

dv

dx
− 1

x
v = −x2

µ(x) = e
∫
− dx

x = e− ln |x| = eln |
1
x
| =

1

x
1

x

dv

dx
− 1

x2
v = −x∫

d

dx

[
1

x
v

]
dx = −

∫
x dx

1

x
v = −x

2

2
+ c

v = −x
3

2
+ cx

1

y
= −x

3

2
+ cx
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Example

Solve the following initial value problem given y(1) = 1:

x2
dy

dx
− 2xy = 3y4

dy

dx
− 2

x
y =

3y4

x2

n = 4 v = y1−4 = y−3

dv

dx
= −3y−4

dy

dx
dy

dx
= −1

3
y4

dv

dx
1

y4

(
dy

dx
= −1

3
y4

dv

dx

)
y−4

dy

dx
− 2

x
y(y−4) =

3

x2

y−4(−1

3
y4

dv

dx
)− 2

x
v =

3

x2

−1

3

dv

dx
− 2

x
v =

3

x2

dv

dx
+

6

x
v = − 9

x2
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This equation is now a first order linear equation in v.

dv

dx
+

6

x
v = − 9

x2

µ(x) = e
∫

6
x

dx = e6 ln |x| = eln |x
6| = x6

x6
dv

dx
+

6x5

v
= −9x4

d

dx

[
x6v

]
= −9x4∫

d

dx

[
x6v

]
dx =

∫
−9x4 dx

x6v = −9

5
x5 + c

v = − 9

5x
+

c

x6

1

y3
= − 9

5x
+

c

x6

Using our initial value:

1

y3
= − 9

5x
+

c

x6

1

13
= −9

5
+

c

16

c =
14

5
1

y3
= −9

5

1

x
+

14

5

1

x6
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Exact Equations

Consider:
z = f(x, y) vs y = f(x)

z = f(x, y) is a surface in 3D, while y = f(x) is a curve in 2D. Recall that when
differentiating y = f(x), dy

dx
= f ′(x) and dy = f ′(x) dx. To differentiate z = f(x, y)

we need to find partial derivatives. These are computed by treating y or x as a
constant and taking the derivative with respect to other variable.

x = f(x, y) = x3y4 − 2x3y5

fx =
∂f

∂x
= 3x2y4 − 6x2y5

fy =
∂f

∂y
= 4x3y3 − 10x3y4

fxy =
∂2f

∂y∂x
= 12x2y3 − 30x2y4

fyx =
∂2f

∂y∂x
= 12x2y3 − 30x2y4

We can also integrate f(x, y) with respect to x or with respect to y.∫
xy3 dy = x

∫
y2 dy =

xy3

3
+ c

dy tells us the variable of integration, with x being constant with respect to y.∫
xy2 dx =

x2y2

2
+ c

dx tells us the variable of integration, with y being constant with respect to x.
Consider again z = f(x, y), the total differential is:

dz =
∂f

∂x
dx+

∂f

∂y
dy

This is a first order equation. This equation is called an exact equation if:

∂

∂y

[
∂f

∂x

]
=

∂

∂x

[
∂f

∂y

]
16



We can write this as:
M(x, y) dx+N(x, y) dy = 0

where M = ∂f
∂x

and N = ∂f
∂y

. We want to find f(x, y) = c, geometrically represented

as a level curve, or a slice of the curve z = f(x, y). Initially:

f(x, y) =

∫
M(x, y) dx+ h(y)

We need to find h(y) by differentiating with respect to y:

∂

∂y

[ ∫
M(x, y) dy

]
= h′(y)∫

h′(y) dy = h(y) + c

f(x, y) =

∫
M(x, y) dx+ h(y) + c = 0

Example

Solve the initial value problem given y(1) = 1:

(x2y3) dx+ (x3y2) dy = 0

M(x, y) = x2y3 N(x, y) = x3y2

∂M

∂y
= 3x2y2

∂N

∂x
= 3x2y2

From this, we can determine that it is an exact equation.

f(x, y) =

∫
x2y3 dx+ h(y)

=
x3y3

3
+ h(y)

∂f

∂y
= x3y2 + h′(y) = N(x, y) = x3y2

∴ h′(y) = 0

h(y) = k

f(x, y) = c =
x3y3

3
+ k

x3y3

3
= c
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Using our initial value:

x3y3

3
= c

(1)(1)

3
= c

x3y3

3
=

1

3

Example

(e2y − y cos(xy)) dx+ (2xe2y − x cos(xy) + 2y) dy = 0

M(x, y) = e2y − y cos(xy) N(x, y) = 2xe2y − x cos(xy) + 2y

∂M

∂y
= 2e2y − (cos(xy) + y(− sin(xy)x))

= 2e2y − cos(xy) + xy sin(xy)

∂N

∂y
= 2e2y − (cos(xy) + x(− sin(xy))y)

= 2e2y − cos(xy) + xy sin(xy)

f(x, y) =

∫
M(x, y) + h(y)

=

∫
(e2y − y cos(xy)) dx+ h(y)

= xe2y − (y + sin(xy)
1

y
) + h(y)

= xe2y − sin(xy) + h(y)

∂f

∂y
= 2xe2y − cos(xy)x+ h′(y) = N(x, y)

h′(y) = 2y

h(y) = y2 + c

∴ f(x, y) = xe2y − sin(xy) + y2 + c

You can find all my notes at http://omgimanerd.tech/notes. If you have any
questions, comments, or concerns, please contact me at alvin@omgimanerd.tech
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