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Volumes By Integration (Shells)
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With the disk method of volume by integration, you can imagine this problem as an
integration problem where a cross section of the cylinder is rotated an axis.

There is another method that uses infinitely small shells which compose the
volume.
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The volume of the disk is:
V = π((r1)

2 − (r2)
2)h
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V = lim
r1→r2

2π
r1 + r2

2
(r1 − r2)h

V = 2πr̄(∆r)h

And as a general form, the sums of the volumes of all the disks that compose the
figure is:

V =

∫ b

a

2πxf(x) dx

Example 1
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When the red section is rotated about the y-axis, it passes through the highlighted
blue section and the following shape results:
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V =

∫ 2

1

2πxf(x) dx

V = 2π

∫ 2

1

x
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x
dx

V = 2π

∫ 2

1

dx

V = 2π
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V = 2π[2 − 1] = 2π

Example 2
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V =

∫ 1

0

2πxf(x) dx

V =

∫ 1

0

2πxe−x
2

dx

V = −π
∫ 1

0

−2xe−x
2

dx

V = π
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V = π

[
e0 − e−1

]
V = π

[
1 − 1

e

]
V = π − π
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Practice Problem 7

y = 4(x− 2)2 y = x2 − 4x+ 2

revolved around the y-axis.
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V = 2π

∫ 3

1

x

[
(x2 − 4x+ 7) + (4(x− 2)2)

]
dx

V = 2π

∫ 3

1

x

[
x3 − 4x+ 7 − 4x2 − 16 + 16x

]
dx

V = 2π

∫ 3

1

−3x3 + 12x2 − 9x dx

V = 2π

[
−3x4

4
+

12x3

3
− 9x2

2

]3
1

V = 16π

You can find all my notes at http://omgimanerd.tech/notes. If you have any
questions, comments, or concerns, please contact me at alvin@omgimanerd.tech

4

http://omgimanerd.tech/notes

