
CSCI 251: Concepts of Parallel and Distributed
Systems

Alvin Lin

September 25th, 2017

Topics

• Message Passing

• Distributed Memory

• Send/receive

• Exercise problem

Message Passing

Every processor has its own memory and the processors may be connected together.
They may be connected via a local area network. Every processing unit has its own
local array. Memory is distributed.

P0

P1

P2

P3

Processes executing on different processors cannot directly access other processors,
they must request data from other processors. There is communication and coordi-
nation among processes executing in different physical processing units.

1



P1

M1

P2

M2

request

send data

There are two paradigms for data distribution:

• Single Program Multiple Data (SPMD): Identical programs run on all the
different processors on different data values. In the early days, SPMD was
called SIMD (Single Instruction Multiple Data).

P0 code1 data0

P1 code1 data1

P2 code1 data2

P3 code1 data3

master

• Multiple Program Multiple Data (MPMD): Each processor runs a separate
program. MPMD does not need a master process to divide and handle the data.

P0 code0 data0

P1 code1 data1

P2 code2 data2

P3 code3 data3

Send and Receive

P1
data d

P2

2



Suppose in the above example, data d is generated by processor P1 and sent to P1,
which requires the data before it can proceed. There are four types of data sending
which we are concerned with:

• Blocking and non-buffered

• Blocking and buffered

• Non-blocking and non-buffered

• Non-blocking and buffered

As the name suggests, blocking means that the execution is blocked until the send
and receive is finished. Buffered means that there is a separate memory segment
designated for holding the data when it is created by process P1.

Sending Process

idling

Receiving Process

request to send

ack

transmission

DMA

“Direct memory access (DMA) is a feature of computer systems that allows cer-
tain hardware subsystems to access main system memory (Random-access memory),
independent of the central processing unit (CPU).

3



Without DMA, when the CPU is using programmed input/output, it is typically
fully occupied for the entire duration of the read or write operation, and is thus
unavailable to perform other work. With DMA, the CPU first initiates the transfer,
then it does other operations while the transfer is in progress, and it finally receives
an interrupt from the DMA controller when the operation is done. This feature is
useful at any time that the CPU cannot keep up with the rate of data transfer, or
when the CPU needs to perform useful work while waiting for a relatively slow I/O
data transfer. Many hardware systems use DMA, including disk drive controllers,
graphics cards, network cards and sound cards. DMA is also used for intra-chip data
transfer in multi-core processors. Computers that have DMA channels can transfer
data to and from devices with much less CPU overhead than computers without
DMA channels. Similarly, a processing element inside a multi-core processor can
transfer data to and from its local memory without occupying its processor time,
allowing computation and data transfer to proceed in parallel.” -Wikipedia

Send and Receive Building Blocks

send(void* sendbuf , int n_elems , int dest);

receive(void* recvbuff , int n_elems , int source);

where sendbuf is a pointer to a buffer at the sender’s memory that stores the data
to be sent, recvbuf is a pointer to the buffer at the receiver’s memory that stores
the received data, n elems are the number the data elements, and dest and source

are identifiers.

Reminders

The midterm is on October 11th. Refer to MyCourses for details on Project 1.

Professor Mohan Kumar:
mjkvcs@rit.edu

https://cs.rit.edu/~mjk

Rahul Dashora (TA):
rd5476@mail.rit.edu

You can find all my notes at http://omgimanerd.tech/notes. If you have any
questions, comments, or concerns, please contact me at alvin@omgimanerd.tech

4

mjkvcs@rit.edu
https://cs.rit.edu/~mjk
rd5476@mail.rit.edu
http://omgimanerd.tech/notes

