Sets

Alvin Lin

Discrete Math for Computing: January 2017 - May 2017

Sets

Sets are fundamental discrete structures. A set is an unordered collection of objects called **elements** of the set. A set is said to contain its elements. We write $a \in A$ if a is an element of the set A. We write $a \notin A$ if a is not an element of the set a. Sets are usually given in uppercase letters while elements are generally given in lowercase letters.

There are several ways to describe sets:

- 1. Roster method
- 2. Set builder notation
- 3. Venn diagrams

Roster Notation

The set of all vowels is:

$$V = \Big\{a, e, i, o, u\Big\}$$

The set of all odd positive integers less than 12 is:

$$O = \left\{1, 3, 5, 7, 9, 11\right\}$$

Other examples:

$$U = \left\{ dog, cat, fish \right\}$$
$$dog \in U$$
$$chicken \notin U$$

Set Builder Notation

$$O = \left\{ x | x \text{ is an odd positive integer less than } 100 \right\}$$

$$[a,b] = \left\{ x | a \le x \le b \right\}$$
$$(a,b] = \left\{ x | a < x \le b \right\}$$
$$[a,b) = \left\{ x | a \le x < b \right\}$$
$$(a,b) = \left\{ x | a < x < b \right\}$$

Set Equality

Two sets are equal if and only if they contain the same elements. You must show that the two sets are subsets of each other. Thus A and B are equal if:

$$\forall x (x \in A \leftrightarrow x \in B)$$

or

$$A \subseteq B \land B \subseteq A$$

We write A = B when sets are equal.

$$\left\{1, 2, 3\right\} = \left\{3, 1, 2\right\}$$

$${1,2,3} \neq {1,2,4}$$

Venn Diagrams

Venn Diagrams are useful for showing relations between sets. The universal set U contains all elements. The set V contains the set of all vowels.

The Empty Set

The empty set \emptyset is the set consisting of no elements (null set).

Theorem: If S is a set, then $\varnothing \subseteq S$ and $S \subseteq S$.

Subsets

The set A is a subset of the set B if and only if every element of A is also in B, notated as $A \subseteq B$

$$\forall x (x \in A \to x \in B)$$

$$\left\{1, 2, 3\right\} \subseteq \left\{1, 2, 3, 4\right\}$$

$$\left\{1, 2, 4\right\} \subseteq \left\{1, 2, 5\right\}$$

Sets may have other sets as members:

$$A = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$
$$a \notin A, b \notin A$$
$$\{a\} \in A, \{b\} \in A$$

The Size of a Set

Let S be a set. If there are exactly n distinct elements of S, then we say that the <u>size</u> of S is n. Written as |S| = n. It is also called the **cardinality** of the set. In this case, S is finite.

Let A be the set of letters in the alphabet. |A| = 26.

A set is said to be infinite if it is not finite. For example, the set of integers is infinite.

Power Sets

Given a set S, the power set of S is the set of all subsets of S. This is denoted by P(S).

$$P({0,1,2}) = {\emptyset, {0}, {1}, {2}, {1,2}, {1,3}, {2,3}, {1,2,3}}$$

For a set S with |S| = n, $|P(S)| = 2^n$.

Cartesian Product

Let A and B be sets. The Cartesian Product of A and B, denoted $A \times B$, is the set of all <u>ordered</u> pairs (a, b) where $a \in A$ and $b \in B$.

$$A\times B=\{(a,b)\mid a\in A\wedge b\in B\}$$

Let $A = \{1, 2\}$ $B = \{a, b, c\}$:

$$A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$$

$$B \times A = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$$

 $A \times B \neq B \times A$ since the Cartesian Product is ordered. $(1,a) \in A \times B$ but $(1,a) \notin B \times A$. Also note that the cardinality of a Cartesian Product is as such:

$$|A \times B| = |A||B|$$

If you have any questions, comments, or concerns, please contact me at alvin@omgimanerd.tech