The Substitution Rule

Alvin Lin

Calculus II: August 2016 - December 2016

The Substitution Rule

$$\int \sin(t)\sqrt{1+\cos(t)}\mathrm{d}t$$

Substitute unsolvable terms with u to reduce the equation to something easier to integrate.

Let:
$$u = 1 + \cos(t)$$

$$du = -\sin(t)dt$$

$$dt = \frac{-du}{\sin(t)}$$

Substitute your new terms back into the original equation. The goal is to get a friendlier integral in terms of another variable. If the new integral has both x and u in it, then it may be advisable to try a different method of integration or substituting a different term.

$$\int \sin(t)\sqrt{u}(\frac{-\mathrm{d}u}{\sin(t)})$$

One we simplify the integral after substituting everything, it becomes much easier to integrate.

$$-\int u^{\frac{1}{2}} du$$

$$-\left(\frac{u^{\frac{3}{2}}}{\frac{3}{2}}\right) + C$$

$$= -\frac{2}{3}(1 + \cos(t))^{\frac{3}{2}} + C$$

Practice problem 30

$$\int \frac{\sec^2(x)}{\tan^2(x)} dx$$

$$Let: \quad u = \tan(x)$$

$$du = \sec^2(x) dx$$

$$\int \frac{du}{u^2}$$

$$\int u^{-2} du$$

$$\frac{u^{-1}}{-1} + C$$

$$= -\frac{1}{\tan(x)} + C$$

Practice problem 31

$$\int \frac{\tan^{-1}(x^2)}{1+x^2} dx$$

$$Let: \quad u = \tan^{-1}(x)$$

$$du = \frac{1}{1+x^2} dx$$

$$\int u^2 du$$

$$= \frac{u^2}{3} + C$$

Practice problem 42

$$\int \frac{\cos(\ln(t))}{t} dt$$

$$Let: \quad u = \ln(t)$$

$$du = \frac{1}{t} dt$$

$$\int \cos(u) du$$

$$= \sin(u) + C$$

If any errors are found, please contact me at alvin.lin.dev@gmail.com