Linear Algebra

Alvin Lin

August 2017 - December 2017

Eigenvectors and Eigenvalues

Let A be an $n \times n$ matrix. A scalar λ is called an **eigenvalue** of A if there exists a non-zero vector $\vec{x} \in \mathbb{R}^n$ such that $A\vec{x} = \lambda \vec{x}$. Such a vector \vec{x} is called an **eigenvector** of A corresponding to λ .

In \mathbb{R}^2 , $A\vec{x} = \lambda x$ means that the action of A on \vec{x} just yields a vector parallel to \vec{x} .

Properties

- $A\vec{x} = \lambda \vec{x}$ for some $\vec{x} \neq \vec{0}$.
- $(A \lambda I)\vec{x} = \vec{0}$ for some $\vec{x} \neq \vec{0}$.
- $null(A \lambda I)$ is nontrivial.
- $det(A \lambda I) = 0$ (allows us to solve for λ to find eigenvalues).
- $|A \lambda I| = 0$ is called the characteristic polynomial.

We define $E_{\lambda} = null(A - \lambda I)$ to be the eigenspace corresponding to λ . Eigenvalues are the roots of $|A - \lambda I|$ and eigenspaces $E_{\lambda_i} = null(A - \lambda_i I)$.

Example

Show that
$$\vec{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 is an eigenvector for $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$.
$$A\vec{x} = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$= 4\lambda$$

So $\lambda = 4$ is an eigenvalue for A and \vec{x} is a corresponding eigenvector.

Example

Show there exists a non-zero vector \vec{x} satisfying $A\vec{x} = 5\vec{x}$.

$$A = \begin{bmatrix} 1 & 2\\ 4 & 3 \end{bmatrix}$$

Conclude: $\lambda = 5$ is an eigenvalue of A.

$$A\vec{x} = 5\vec{x}$$

$$(A - 5I)\vec{x} = \vec{0}$$

$$A - 5I = \begin{bmatrix} -4 & 2\\ 4 & -2 \end{bmatrix} \sim \begin{bmatrix} -4 & 2\\ 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & \frac{-1}{2}\\ 0 & 0 \end{bmatrix}$$

$$x_1 - \frac{1}{2}x_2 = 0$$

$$x_1 = \frac{1}{2}x_2$$

$$\vec{x} = \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1\\ 2 \end{bmatrix}$$

$$E_5 = span\left(\begin{bmatrix} 1\\ 2 \end{bmatrix}\right)$$

Example

Show that $\lambda = 6$ is an eigenvalue of:

$$A = \begin{bmatrix} 7 & 1 & -2 \\ -3 & 3 & 6 \\ 2 & 2 & 2 \end{bmatrix}$$

We need to show $(A - 6I)\vec{x} = 6$ has a non-trivial solution.

$$A - 6I = \begin{bmatrix} 1 & 1 & -2 \\ -3 & -3 & 6 \\ 2 & 2 & -4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$x_{1} + x_{2} - 2x_{3} = 0$$

$$x_{1} = -x_{2} + 2x_{3}$$

$$\vec{x} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \end{bmatrix} = \begin{bmatrix} -x_{2} + 2x_{3} \\ x_{2} \\ x_{3} \end{bmatrix} = x_{2} \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} + x_{2} \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix}$$

$$E_{6} = span \left(\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 0 \end{bmatrix} \right)$$

Example

Find the eigenvectors and eigenvalues over \mathbb{R} and $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}, i = \sqrt{-1}$ of the following:

(i)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
$$A - \lambda I = \begin{bmatrix} 1 - \lambda & 0 \\ 0 & -1 - \lambda \end{bmatrix}$$
$$(1 - \lambda)(-1 - \lambda) = 0$$
$$1 - \lambda = 0$$
$$-1 - \lambda = 0$$
$$\lambda = \pm 1$$

For $\lambda = 1$:

$$A - I = \begin{bmatrix} 0 & 0 \\ 0 & -1 \end{bmatrix} \sim \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$E_1 = span\left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \right)$$

For $\lambda = -1$:

$$A + I = \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
$$E_1 = span\left(\begin{bmatrix} 0 \\ 1 \end{bmatrix} \right)$$

(ii) $B = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ $B - \lambda I = \begin{bmatrix} 3 - \lambda & 1 \\ 1 & 3 - \lambda \end{bmatrix}$ $(3 - \lambda)(3 - \lambda) - 1 = 0$ $9 - 6\lambda + \lambda^2 - 1 = 0$ $(\lambda - 4)(\lambda - 2) = 0$ $\lambda = 4 \quad \lambda = 2$

For $\lambda = 2$:

$$B - 2I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$$
$$x_1 + x_2 = 0$$
$$x_1 = -x_2$$
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -x_2 \\ x_2 \end{bmatrix} = x_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$
$$E_2 = span\left(\begin{bmatrix} -1 \\ 1 \end{bmatrix} \right)$$

For $\lambda = 4$:

$$B - 4I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix} \sim \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 \\ 0 & 0 \end{bmatrix}$$
$$x_1 - x_2 = 0$$
$$x_1 = x_2$$
$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$E_4 = span\left(\begin{bmatrix} 1 \\ 1 \end{bmatrix}\right)$$

(iii) $C = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$

$$C - \lambda I = \begin{bmatrix} -\lambda & -1 \\ 1 & -\lambda \end{bmatrix}$$
$$(-\lambda)^2 - (1)(-1) = 0$$
$$\lambda^2 + 1 = 0$$
$$\lambda^2 = -1$$
$$\lambda = \pm i$$

Depending on our domain of interest, we have no real-valued eigenvalues and complex eigenvalues $\pm i$.

Theorems

Theorem 1. The eigenvalues of a triangular matrix are the entries on its main diagonal. **Proof:**

$$A = \begin{bmatrix} a_{11} & \dots & \dots & \dots \\ 0 & a_{22} & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & \dots & a_{nn} \end{bmatrix}$$
$$0 = |A - \lambda I|$$
$$= \begin{vmatrix} a_{11} - \lambda & \dots & \dots & \dots \\ 0 & a_{22} - \lambda & \dots & \dots \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & \dots & a_{nn} - \lambda \end{vmatrix}$$
$$= (a_{11} - \lambda)(a_{22} - \lambda)\dots(a_{nn} - \lambda)$$
$$\lambda = a_{11}, a_{22}, \dots, a_{nn}$$

Theorem 2. A square matrix A is invertible if and only if 0 is not an eigenvalue of A. **Proof:**

$$\begin{array}{l} A \text{ is invertible} \leftrightarrow |A| \neq 0 \\ \leftrightarrow |A - 0I| \neq 0 \\ \leftrightarrow \lambda = 0 \text{ is not an eigenvalue of } A \end{array}$$

- Theorem 3. Let A be a square matrix with eigenvalue λ and corresponding eigenvector $\vec{x},$ then:
 - (i) For any positive integer n, λ^n is an eigenvalue of A^n with corresponding eigenvector \vec{x} .

Proof:

Base Case n = 1:

 $A^1 \vec{x} = \lambda^1 \vec{x}$

Induction Hypothesis:

$$A^n \vec{x} = \lambda^n \vec{x}$$

Induction Step:

$$A^{n+1}\vec{x} = A(A^n\vec{x})$$

= $A(\lambda^n\vec{x})$
= $\lambda^n(A\vec{x})$
= $\lambda^n(\lambda\vec{x})$
= $\lambda^{n+1}\vec{x}$

(ii) If A is invertible, then $\frac{1}{\lambda}$ is an eigenvalue of A^{-1} with corresponding eigenvector \vec{x} .

Proof:

$$\lambda(A^{-1}\vec{x}) = A^{-1}(\lambda\vec{x})$$
$$= A^{-1}(A\vec{x})$$
$$= I\vec{x}$$
$$= \vec{x}$$
$$\therefore \lambda(A^{-1}\vec{x}) = \vec{x} \leftrightarrow A^{-1}\vec{x} = (\frac{1}{\lambda})\vec{x}$$

(iii) If A is invertible, the for any integer n, λ^n is an eigenvalue of A^n with corresponding eigenvector \vec{x} .

Proof:

We only need to show this for negative integers. Base Case n = -1: Because of part (ii), this is true. Induction Hypothesis:

$$A^{-n}\vec{x} = \frac{1}{\lambda^n}\vec{x}$$

Induction Step: Assume it is true for -n and show it is true for -n-1.

$$A^{-(n+1)}\vec{x} = A^{-1}(A^{-n}\vec{x})$$
$$= A^{-1}(\frac{1}{\lambda^n}\vec{x})$$
$$= (\frac{1}{\lambda^n})(A^{-1}\vec{x})$$
$$= (\frac{1}{\lambda^n})(\frac{1}{\lambda}\vec{x})$$
$$= (\frac{1}{\lambda^{n+1}})\vec{x}$$

Theorem 4. Suppose A is $n \times n$, and A has eigenvectors $\vec{v_1}, \ldots, \vec{v_m}$ with corresponding eigenvalues $\lambda_1, \ldots, \lambda_m$. If $\vec{x} \in \mathbb{R}^n$ is $\vec{x} = c_1 \vec{v_1} + \cdots + c_m \vec{v_m}$, then for any integer k:

$$A^k \vec{x} = c_1 \lambda_1^k \vec{v_1} + \dots + c_m \lambda_m^k \vec{v_m}$$

Proof:

$$\vec{x} = c_1 \vec{v_1} + \dots + c_m \vec{v_m}$$
$$A^k \vec{x} = A^k (c_1 \vec{v_1} + \dots + c_m \vec{v_m})$$
$$= c_1 A^k \vec{v_1} + \dots + c_m A^k \vec{v_m}$$
$$= c_1 \lambda_1^k \vec{v_1} + \dots + c_m \lambda_m^k \vec{v_m}$$

Theorem 5. Let A be an $n \times n$ matrix. Let $\lambda_1, \ldots, \lambda_m$ be distinct eigenvalues of A. Let $\vec{v_1}, \ldots, \vec{v_m}$ be the corresponding eigenvectors. Then $\vec{v_1}, \ldots, \vec{v_m}$ are linearly independent.

Proof (by contradiction):

Suppose $\vec{v_1}, \ldots, \vec{v_m}$ are linearly dependent. Choose the smallest index k+1 such that $\overrightarrow{v_{k+1}} = c_1 \vec{v_1} + \cdots + c_k \vec{v_k}$. Note that by the minimality of $k+1, \vec{v_1}, \ldots, \vec{v_k}$ are linearly dependent.

$$A\overrightarrow{v_{k+1}} = A(c_1\overrightarrow{v_1} + \dots + c_k\overrightarrow{v_k})$$

$$\lambda_{k+1}\overrightarrow{v_{k+1}} = c_1\lambda_1\overrightarrow{v_1} + \dots + c_k\lambda_k\overrightarrow{v_k}$$

$$\lambda_{k+1}\overrightarrow{v_{k+1}} = c_1\lambda_{k+1}\overrightarrow{v_1} + \dots + c_k\lambda_{k+1}\overrightarrow{v_k}$$

$$\overrightarrow{0} = c_1(\lambda_1 - \lambda_{k+1})\overrightarrow{v_1} + \dots + c_k(\lambda_k - \lambda_{k+1})\overrightarrow{v_k}$$

By the linear independence of $\vec{v_1}, \ldots, \vec{v_k}$ the scalars are zero, this implies that $c_1 = c_2 = -c_k = 0$ and thus $\vec{v_{k+1}} = \vec{0}$. Since eigenvectors cannot be 0, this is a contradiction and thus our initial assumption must be false.

You can find all my notes at http://omgimanerd.tech/notes. If you have any questions, comments, or concerns, please contact me at alvin@omgimanerd.tech