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Eigenvectors and Eigenvalues

Let A be an n× n matrix. A scalar λ is called an eigenvalue of A if there exists a
non-zero vector ~x ∈ Rn such that A~x = λ~x. Such a vector ~x is called an eigenvector
of A corresponding to λ.
In R2, A~x = λx means that the action of A on ~x just yields a vector parallel to ~x.

Properties

• A~x = λ~x for some ~x 6= ~0.

• (A− λI)~x = ~0 for some ~x 6= ~0.

• null(A− λI) is nontrivial.

• det(A− λI) = 0 (allows us to solve for λ to find eigenvalues).

• |A− λI| = 0 is called the characteristic polynomial.

We define Eλ = null(A− λI) to be the eigenspace corresponding to λ. Eigenvalues
are the roots of |A− λI| and eigenspaces Eλi = null(A− λiI).

Example

Show that ~x =

[
1
1

]
is an eigenvector for A =

[
3 1
1 3

]
.

A~x =

[
3 1
1 3

] [
1
1

]
=

[
4
4

]
= 4

[
1
1

]
= 4λ
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So λ = 4 is an eigenvalue for A and ~x is a corresponding eigenvector.

Example

Show there exists a non-zero vector ~x satisfying A~x = 5~x.

A =

[
1 2
4 3

]
Conclude: λ = 5 is an eigenvalue of A.

A~x = 5~x

(A− 5I)~x = ~0

A− 5I =

[
−4 2
4 −2

]
∼
[
−4 2
0 0

]
∼
[
1 −1

2

0 0

]
x1 −

1

2
x2 = 0

x1 =
1

2
x2

~x =

[
x1
x2

]
= x1

[
1
2

]
E5 = span

([
1
2

])
Example

Show that λ = 6 is an eigenvalue of:

A =

 7 1 −2
−3 3 6
2 2 2


We need to show (A− 6I)~x = 6 has a non-trivial solution.

A− 6I =

 1 1 −2
−3 −3 6
2 2 −4

 ∼
1 1 −2

0 0 0
0 0 0
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x1 + x2 − 2x3 = 0

x1 = −x2 + 2x3

~x =

x1x2
x3

 =

−x2 + 2x3
x2
x3

 = x2

−1
1
0

+ x2

2
0
0


E6 = span

−1
1
0

 ,
2

0
0


Example

Find the eigenvectors and eigenvalues over R and C = {a + bi | a, b ∈ R}, i =
√
−1

of the following:

(i) A =

[
1 0
0 −1

]

A− λI =

[
1− λ 0

0 −1− λ

]
(1− λ)(−1− λ) = 0

1− λ = 0

−1− λ = 0

λ = ±1

For λ = 1:

A− I =

[
0 0
0 −1

]
∼
[
0 0
0 1

]
~x =

[
x1
x2

]
=

[
x1
0

]
= x1

[
1
0

]
E1 = span

([
1
0

])
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For λ = −1:

A+ I =

[
2 0
0 0

]
∼
[
1 0
0 0

]
~x =

[
x1
x2

]
=

[
0
x2

]
= x2

[
0
1

]
E1 = span

([
0
1

])

(ii) B =

[
3 1
1 3

]

B − λI =

[
3− λ 1

1 3− λ

]
(3− λ)(3− λ)− 1 = 0

9− 6λ+ λ2 − 1 = 0

(λ− 4)(λ− 2) = 0

λ = 4 λ = 2

For λ = 2:

B − 2I =

[
1 1
1 1

]
∼
[
1 1
0 0

]
x1 + x2 = 0

x1 = −x2

~x =

[
x1
x2

]
=

[
−x2
x2

]
= x2

[
−1
1

]
E2 = span

([
−1
1

])
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For λ = 4:

B − 4I =

[
−1 1
1 −1

]
∼
[
−1 1
0 0

]
∼
[
1 −1
0 0

]
x1 − x2 = 0

x1 = x2

~x =

[
x1
x2

]
=

[
x1
x2

]
= x1

[
1
1

]
E4 = span

([
1
1

])

(iii) C =

[
0 −1
1 0

]

C − λI =

[
−λ −1
1 −λ

]
(−λ)2 − (1)(−1) = 0

λ2 + 1 = 0

λ2 = −1

λ = ±i

Depending on our domain of interest, we have no real-valued eigenvalues and
complex eigenvalues ±i.

Theorems

Theorem 1. The eigenvalues of a triangular matrix are the entries on its main diag-
onal.
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Proof:

A =


a11 . . . . . . . . .
0 a22 . . . . . .
...

...
...

...
0 . . . . . . ann


0 = |A− λI|

=

∣∣∣∣∣∣∣∣∣
a11 − λ . . . . . . . . .

0 a22 − λ . . . . . .
...

...
...

...
0 . . . . . . ann − λ

∣∣∣∣∣∣∣∣∣
= (a11 − λ)(a22 − λ) . . . (ann − λ)

λ = a11, a22, . . . , ann

Theorem 2. A square matrix A is invertible if and only if 0 is not an eigenvalue of
A.
Proof:

A is invertible↔ |A| 6= 0

↔ |A− 0I| 6= 0

↔ λ = 0 is not an eigenvalue of A

Theorem 3. Let A be a square matrix with eigenvalue λ and corresponding eigen-
vector ~x, then:

(i) For any positive integer n, λn is an eigenvalue of An with corre-
sponding eigenvector ~x.
Proof:
Base Case n = 1:

A1~x = λ1~x

Induction Hypothesis:
An~x = λn~x
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Induction Step:

An+1~x = A(An~x)

= A(λn~x)

= λn(A~x)

= λn(λ~x)

= λn+1~x

(ii) If A is invertible, then 1
λ

is an eigenvalue of A−1 with corresponding
eigenvector ~x.
Proof:

λ(A−1~x) = A−1(λ~x)

= A−1(A~x)

= I~x

= ~x

∴ λ(A−1~x) = ~x↔ A−1~x = (
1

λ
)~x

(iii) If A is invertible, the for any integer n, λn is an eigenvalue of An

with corresponding eigenvector ~x.
Proof:
We only need to show this for negative integers.
Base Case n = −1: Because of part (ii), this is true.
Induction Hypothesis:

A−n~x =
1

λn
~x

Induction Step: Assume it is true for −n and show it is true for
−n− 1.

A−(n+1)~x = A−1(A−n~x)

= A−1(
1

λn
~x)

= (
1

λn
)(A−1~x)

= (
1

λn
)(

1

λ
~x)

= (
1

λn+1
)~x
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Theorem 4. Suppose A is n×n, and A has eigenvectors ~v1, . . . , ~vm with corresponding
eigenvalues λ1, . . . , λm. If ~x ∈ Rn is ~x = c1 ~v1 + · · ·+ cm ~vm, then for any
integer k:

Ak~x = c1λ
k
1 ~v1 + · · ·+ cmλ

k
m ~vm

Proof:

~x = c1 ~v1 + · · ·+ cm ~vm

Ak~x = Ak(c1 ~v1 + · · ·+ cm ~vm)

= c1A
k ~v1 + · · ·+ cmA

k ~vm

= c1λ
k
1 ~v1 + · · ·+ cmλ

k
m ~vm

Theorem 5. Let A be an n× n matrix. Let λ1, . . . , λm be distinct eigenvalues of A.
Let ~v1, . . . , ~vm be the corresponding eigenvectors. Then ~v1, . . . , ~vm are
linearly independent.
Proof (by contradiction):
Suppose ~v1, . . . , ~vm are linearly dependent. Choose the smallest index
k + 1 such that −−→vk+1 = c1 ~v1 + · · · + ck ~vk. Note that by the minimality
of k + 1, ~v1, . . . , ~vk are linearly dependent.

A−−→vk+1 = A(c1 ~v1 + · · ·+ ck ~vk)

λk+1
−−→vk+1 = c1λ1 ~v1 + · · ·+ ckλk ~vk

λk+1
−−→vk+1 = c1λk+1 ~v1 + · · ·+ ckλk+1 ~vk

~0 = c1(λ1 − λk+1)~v1 + · · ·+ ck(λk − λk+1)~vk

By the linear independence of ~v1, . . . , ~vk the scalars are zero, this implies
that c1 = c2 = −ck = 0 and thus −−→vk+1 = ~0. Since eigenvectors cannot be
0, this is a contradiction and thus our initial assumption must be false.

You can find all my notes at http://omgimanerd.tech/notes. If you have any
questions, comments, or concerns, please contact me at alvin@omgimanerd.tech
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