Curves Defined By Parametric Equations

Alvin Lin

Calculus II: August 2016 - December 2016

Curves Defined By Parametric Equations

A curve defined by a parametric equation is a curve defined by:

$$y = f(t) \quad y = g(t) \quad t_0 \le t \le t_1$$

Such as:

Example 1

Eliminate the parameters and find the equation of the graph in terms of y and x:

$$x = 1 + t$$
 $y = 5 - 2t$ $-2 \le t \le 3$

Example 2

Eliminate the parameters and find the equation of the graph in terms of y and x:

$$y^{2} = (t^{3})^{2} = t^{6} = (t^{2})^{3} = x^{3}$$

 $y^{2} = x^{3}$

Example 3

Eliminate the parameters and find the equation of the graph in terms of y and x:

Example 4

Eliminate the parameters and find the equation of the graph in terms of y and x:

$$x = 2\sin(\theta)$$
 $y = 4 + \cos(\theta)$

You can find all my notes at http://omgimanerd.tech/notes. If you have any questions, comments, or concerns, please contact me at alvin@omgimanerd.tech