Curves Defined By Parametric Equations

Alvin Lin

Calculus II: August 2016 - December 2016

Curves Defined By Parametric Equations

A curve defined by a parametric equation is a curve defined by:

$$y = f(t)$$
 $y = g(t)$ $t_0 \le t \le t_1$

Such as:

$$x = \pi \cos(\theta)$$
 $y = \pi \sin(\theta)$ $0 \le \theta \le 2\pi$

Example 1

Eliminate the parameters and find the equation of the graph in terms of y and x:

$$x = 1 + t \quad y = 5 - 2t \quad -2 \le t \le 3$$

Example 2

Eliminate the parameters and find the equation of the graph in terms of y and x:

$$y^2 = (t^3)^2 = t^6 = (t^2)^3 = x^3$$

 $y^2 = x^3$

Example 3

Eliminate the parameters and find the equation of the graph in terms of y and x:

Example 4

Eliminate the parameters and find the equation of the graph in terms of y and x:

$$x = 2\sin(\theta)$$
 $y = 4 + \cos(\theta)$

You can find all my notes at http://omgimanerd.tech/notes. If you have any questions, comments, or concerns, please contact me at alvin@omgimanerd.tech